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Abstract. In this paper we consider the method for the restoration of phase portrait 

structure of population dynamics and apply this method for analysis of experimental 

data on the population dynamics of pine looper moth (Bupalus piniarius L.). The 

method is based on the results of phenomenological theory of forest insect population 

dynamics (Isaev et al., 1984, 2001; Nedorezov, 1986) and includes the elements of 

statistics, cluster analysis and knowledge of trajectory’s behavior of system of 

ordinary differential equations. Using the method allows determination of such 

important features of phase plane as the value of stable level, structure and 

boundaries of the stable zone, behavior of the threshold curve which separates the 

stable and outbreak zones and coordinates of “point of escape” etc. 

 

1. Introduction 

A lot of various publications is devoted to analysis of pine looper moth population 

dynamics (Schwerdtfeger, 1941, 1944, 1957, 1968; Klomp, 1966; Isaev et al., 1984, 1997, 2001; 

Nedorezov, 1986, 2012; Nedorezov, Nekljudova, 2000; Kendall et al., 2005; Palnikova, 

Sviderskaya, Soukhovolsky, 2002 and many others). These publications are devoted to general 

analysis of existing datasets, identification of population dynamic types, constructing of phase 

portraits for various particular cases, and to modeling and forecast of population size changing.  

Within the framework of phenomenological theory of forest insect dynamics (Isaev et al., 

1984, 2001; Isaev, Nedorezov, Khlebopros, 1979, 1980) pine looper moth was classified as 

eruptive species with dynamics corresponding to an outbreak proper. Note that classification of 

insects was based on analysis of non-parametric model (model of Kolmogorov type) of predator-

prey system dynamics, obtained dynamic regimes were ranked, and insects were classified with 

respect to their maximal possibilities. An outbreak proper, permanent outbreak and fixed outbreak 

have maximal ranks (among all other types of population dynamics). All these types of population 

dynamics belong to group of dynamic regimes which characterize eruptive species. 
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Further development of phenomenological theory was realized in several directions. First 

of all, there were attempts to construct parametric model (of general type) which have all 

necessary dynamic regimes (Khlebopros et al., 1979, 1980), and models which describe dynamics 

of concrete species (Nedorezov, 1981; Nedorezov, Nekljudova, 2000). Development of this 

direction has a serious problem: if we have a model with rather big number of parameters and 

variables which gives good approximation of existing time series, may be, we have nothing. We 

have no reasons to say that we have a good result if we did not prove that we cannot give good 

approximation with poorer model (with smaller number of parameters and variables). Current state 

of this direction is following: we try to apply simplest mathematical models (like Verhulst, 

Gompertz, Kostitzin etc. models) for description of dynamics of some important species of forest 

and agricultural pests (in particular, Tortrix viridana L., Zeiraphera diniana Gn., Lymantria dispar 

L. etc.). And it is interesting to note that in some cases we got good results in application of 

primitive mathematical model (for example, discrete logistic model) to known time series (see, for 

example, Nedorezov, 2012, 2015; Nedorezov, Sadykova, 2015). 

Other direction of phenomenological theory development was correlated with checking of 

completeness of insect classification with methods of cluster analysis. It was provided for big 

number of empirical trajectories and for various types of encoding of these trajectories 

(Nedorezov, 1986, 2013a). Obtained results are close to original classification; but this problem 

cannot be solved totally because empirical time series are very short (very big part of existing 

empirical trajectories), datasets are presented in various units, time series for “uninteresting 

species” (non-outbreak species, indifferent species) are absent etc. 

May be, the next direction is most of interest: this is the problem of identification of phase 

portrait structure (Nedorezov, 1989, 1999; Nedorezov, Utyupin, 2011). For every species we have 

to have analog of “passport” which gives information about population dynamic types, about 

critical levels, and specificity of domains when and where we can use one or other protected 

methods. It becomes extremely important in a situation when we do not know a law of population 

dynamics, when we cannot find or construct mathematical model which can give good 

approximation of time series and obtain reliable prediction.  

Phase portrait contains various its elements: stable and unstable stationary states, special 

surfaces (separatrixes) which divides zones of attractions of one or other attractors etc. If we have 

a mathematical model we can estimate model parameters using various statistical methods. For 

estimated values of model parameters we can easily find structure of phase space (in a result of 

analytical or numerical analysis of model). But if we have not a model problem becomes very 

difficult. In any sense this situation is close to other problems in statistics: if we know (or if we can 
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assume) that elements of sample have concrete distribution we can estimate parameters of this 

distribution; if we have no idea about a law we can restore density function using various 

statistical methods (Gubarev, 1985). 

Before restoration of phase portrait we have to demonstrate that observed time series do not 

correspond to simple strong cycles. It can be realized with standard statistical methods: in details it 

was described in our publications where it was also applied to some well-known time series 

(Nedorezov, 2013b, 2013c, 2013d). In particular, it was applied to analysis of considering in 

current publication time series on pine looper moth population dynamics.  

Main goal of current publication is following: to determine basic elements of phase portrait 

of pine looper moth population dynamics in Germany (Schwerdtfeger, 1941, 1944, 1957, 1968). 

 

2. Idea of method 

The basic idea of the method of the restoration of phase portraits structure is the following: 

to combine our knowledge about the behavior of theoretical trajectories, methods of cluster 

analysis and mathematical statistics. The phase portrait of an outbreak proper on Figure 1 was 

obtained as a result of analysis of mathematical model which describes the interaction between 

phytophagous insects and their entomophagous (Isaev et al., 1984, 2001).  

 

 

Fig. 1. Phase portrait of an outbreak proper. Details are in the text. 
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Phase portrait is presented on the plane “population density – birth rate”. kx  is a population 

density at moment k . Birth rate is determined as relation of two nearest values of population 

densities: 

k

k

k
x

x
y 1 . 

It is well-known that all stationary states of system belong to strait line 1y . If birth rate is 

greater than 1, 1y , population density increases; if there is the inverse relation, 1y , 

population density decreases. Point 1x  is global stable equilibrium. In phase portrait we have no 

other stable attractors. Thus, if we check population density changing during a long time interval, 

biggest cluster of points must be concentrated near this stable point 1x . Within the boundaries of 

zone of stability (near point 1x ; fig. 1) we have to observe “ring” moving of empirical trajectory. 

Below we will divide between two types of moving of trajectory: “ring” moving which can be 

observed around any attractor, and moving with determined direction of changing of population 

density for all parts of trajectory in cluster.  

Point of escape rx  is a saddle point: ry  is incoming separatrix and qy  is outcoming 

separatrix of this saddle (fig. 1). In upper part of phase plane ( 1y ) separatrix ry  divides zone of 

stability and outbreak zone. As we can see an outbreak trajectory ...abcd  at initial period of 

outbreak goes to saddle point rx . This dynamic effect was found for big part of outbreak species 

Isaev et al., 1984, 2001). At that moments speed of movement of system decreases: in a result of it 

we can get concentration of empirical points near saddle point rx . But it will be a cluster with 

points with determined direction: from left part of phase plane to right. At the same time we may 

have big fluctuations of population size within the limits of zone of stability (fig. 1): these 

trajectories can be close to point of escape rx , and respective decrease of speed of system moving 

can be observed too. As it was pointed out above it can lead to appearance of cluster of points near 

rx . This cluster can be close to cluster which contains points of type “b” of outbreak trajectory.  

Finally, if population dynamics corresponds to the outbreak proper (fig. 1) we have to have 

biggest cluster of points near stable level 1x . Taking into account that number of outbreak 

trajectories and trajectories corresponding to big fluctuations within the limits of stable zone are 

not so big, big (but smaller) cluster must be observed near point of escape rx .  

Maximum of population size can be observed near saddle point Tx  (fig. 1). Near this point 

we also have a decreasing of speed of system moving and, respectively, sometimes we may have 

cluster organized by points of “d” type (points with maximum values of population size). This 
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cluster can be formed by points of outbreak trajectories only. It means that this cluster must be 

smaller than two previous clusters.  

Minimum value of population size on peak phase of outbreak is ex . This point (fig. 1) is 

unstable knot or focus (“repeller”): it means that all trajectories go out of this point. In other 

words, we cannot have any clusters near this point, and concentration of empirical points in this 

zone must have minimum value.  

On phase portrait we have some important curves like 1  and 2  (boundaries of zone of 

inertia regulative mechanisms action), cy , 
'

cy  and 
''

cy  (curves of maximum and minimum values 

of birth rate y ), y  (upper limit of phase portrait) which cannot be determined without using of 

mathematical model. But in all situations before determination of detailed features of phase 

portrait we have to solve the problem with identification of dynamic type of population. There 

exists a lot of methods from very simple and up to very difficult. 

 

3. Time series  

We used the known data of Schwerdtfeger (1957, 1968) on fluctuations of the density of 

pine moth (Bupalus piniarius L.) in the pine forests near the town of Letzingen in Germany. The 

data are freely available online in the NERC database (Centre for Population Biology, Imperial 

College, 1999, no. 3759). The data are presented as “the number of caterpillars in the litter per one 

square meter in December”. In total, there are 58 values (N = 58, initial sampling volume), and the 

data for 1911 and 1912 are absent. Empirical trajectories are presented in Figure 2 on the plane 

),( 1kk xx  – “population density at time k  – population density at time 1k ” – in logarithmic 

scales. 

 

4. Very simple method 

In book by Lakin (1990) it is possible to find very simple method for grouping of existing 

dataset (Starges method). For scalar sample }{ kz , mk ,...,2,1 , we have to determined a relation 

of scope of the sample and number of intervals we want to have:  

K

zz minmax  . 

m axz  is a maximum value in the sample }{ kz , and m inz  is a minimum value in the sample.   is a 

length of interval. K  can be determined as follows (approximately): 

)lg(322.31 mK  . 

Left boundary of intervals (which must cover all points of sample }{ kz ) may be determined as 
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Fig. 2. Empirical trajectory of pine looper moth population dynamics (in logarithmic scales): a – 

point 1 corresponds to 1881/1882, point 10 corresponds to 1890/1891; b – point 20 corresponds to 

1900/1901; c – point 29 corresponds to 1910; d – point 33 corresponds to 1913/1914; e – point 59 

corresponds to 1939/1940. 

 

2
min

1 
 zzL . 

It means that point m inz  will be a mid point of first interval. Process of determination of boundaries 

of intervals can be described by the formula  21

LR zz . The right boundary of last interval must 

satisfy to condition maxzz j

R  . Determination of numbers of points in every pointed out intervals 

allows constructing a histogram.  

In considering case we have the sample )},{( 1kk xx : it is more comfortable to use phase 

plane ),( 1kk xx  – “population density at time k  – population density at time 1k ” – than phase 

plane “population density x  – birth rate y ” because we don’t need to divide onto zero (sometimes 

estimations of population density can be equal to zero), we can use obvious metrics on this phase 
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space (in particular, Euclidian distance), all stationary states of system belong to bisectrix 

kk xx 1  etc. 

Separately for abscissas and ordinates of sample we can apply Starges’ method, and divide 

the plane onto system of rectangles. For every rectangle we can calculate number of points of 

sample, and finally it will allow obtaining estimation of two-dimensional density function (fig. 3).  

 

 

Fig. 3. Distribution of empirical points on the plane. 

 

As we can see on figure 3, biggest cluster is in the left part of plane, in rectangle 

]375.0,0[]392.0,0[   (20 points). In rectangle ]027.1,375.0[]392.0,0[   we have 7 points, in 

rectangle ]375.0,0[]04.1,392.0[   – 6, in rectangle ]027.1,375.0[]04.1,392.0[   – 7, in rectangle 

]33.2,678.1[]04.1,392.0[   – 3. In all other rectangles we have 0,1 or 2 points. Such distribution of 

points gives us an argument for conclusion that population dynamics corresponds to outbreak 

proper (Isaev et al., 1984, 2001).  May be, we have other type of population dynamics: prodromal 

type with wide phase portrait and one point of system stabilization. Other hypotheses about 

correspondence of pine looper moth population dynamics to permanent outbreak, or fixed outbreak, 

or reverse outbreak we have to reject. 

 

5. Estimation of values of stationary states 

Very simple method we used in previous chapter doesn’t allow determination of 

coordinates of stationary states. For this reason we have to use other methods (Gubarev, 1985). As 

it was pointed out above on the phase plane ),( 1kk xx  all stationary states are on straight line 

kk xx 1 . Thus, we can try to estimate positions of stationary states analyzing value of density 
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along this straight line. For estimation of values of density function we used method of k -nearest 

points (neighbors): value of density is proportional to the following amount (Gubarev, 1985):  





k

m

m

D
xf

1

)(



. 

In this expression m  is Euclidian distance between point x  on straight line kk xx 1  and one of 

k  nearest points determined by considering sample. Constant D  is determined from condition that 

integral of density function must be equal to 1.  

 

 

Fig. 4. Dependence of function f  on x  for 3k . 

 

In Figure 4 there are results of calculations for 3k . As we can see in this figure biggest 

maximum 1C  of density function f  is observed in the zone of low value of population density (for 

146.0x  function 4015.18)( xf ). This amount 0.146 can be used as estimation of stable level 

1x  (fig. 1). Local maximum 2C  can be interpreted as cluster of points which was organized near 

saddle point (point of escape) rx  (fig. 1). Thus, 533.0rx , 8768.7)( rxf . One more cluster 

(theoretically) can be observed near saddle point Tx .But it is necessary to take into account that 

point’s density in this part of phase plane is extremely small. We can accept as preliminary 
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hypothesis that maximum 3C  corresponds to pointed out stationary state. If so, 392.1Tx , 

2258.1)( Txf .  

 

 

 

Fig. 5. Estimations of density function f  for 5k  (a) and 7k  (b).  
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One of the main points on phase plane is ex . This is unstable stationary state (repeller) and 

all outbreak trajectories during the peak phase have bigger values of population density than this 

amount ( exd  ; fig. 1). If so, local minimum of density function can give us an estimation of 

occupation of this repeller. Thus, 238.1ex , 11328.1)( exf .  

For two other cases (fig. 5) estimations of density functions have the similar features. In 

first case (fig. 5a)  144.01 x , 2156.11)( 1 xf ; in the second case (fig. 5b) 142.01 x , 

847.7)( 1 xf . Note, for all three cases we have close estimations of stable level 1x . Point of 

escape rx : in first case 493.0rx , 1825.4)( rxf ; in the second case 443.0rx , 

5912.2)( rxf . Estimations of value of rx  are also close to each other in all three cases. 

In both variants presented on figure 5 we have a problem with identification of occupation 

of points ex  and Tx . It can be explained in a result of increasing of “influence” (on estimations of 

values of density function) of points which are far from the zone of maximum of outbreak (fig. 1). 

 

6. Cluster analysis of trajectories 

Let’s assume that the distance between two points of the sample A x xk k ( , )1  and 

B x xj j ( , )1  is determined by the following formula:  

2

11

2 )()(),(   jkjk xxxxBA . 

Results of clustering are presented in Figure 6. As we can see in this figure first step of 

process correlates with appearance of two clusters (distance between points are equal to zero): 

coordinates of point 11 (1891/1892) are equal to coordinates of point 26 (1906/1907), and 

coordinates of point 44 (1924/1925) are equal to coordinates of point 56 (1936/1937). On two last 

steps of cluster process (fig.6) two points – 47 (1927/1928) and 48 (1928/1929) – combined 

together with big cluster (we will write as step 1S  for point 48 and step 2S  for point 47). These 

points belong to biggest outbreak trajectory: we can observe biggest value of amplitude of insect 

outbreak (fig. 2 and 7). On previous step 3S  we have combining of small two-point cluster {8,49} 

with big cluster. It allows concluding that 4817.4Tx  but we cannot say that rather big cluster 

appeared near this saddle point.  

Before combining of big cluster with set {8,49} point 7 (1887/1888) becomes the element 

of big cluster (step 4S ; fig. 6). Curve 1L  divides (conditionally) pointed out points from big 

cluster (fig. 7). After this step more interesting situations can be observed: first of all, three-point 

cluster {20,37,56} combines with big cluster (step 5S ). 
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Fig. 6. Process of clustering on phase 

plane ),( 1kk xx .  
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Let }56,37,20{1 W  (fig. 7). Points of cluster 1W  have following property: birth rate is less 

than one – population size decreases after respective time moments. Moreover, these points 

characterize maximums of outbreaks: it allows us assuming that appearance of this cluster on 

phase plane can be explained as a result of “deceleration” of system moving near saddle point Tx . 

Taking into account that points of super-outbreaks 7 and 47-48 are far from all points of sample, it 

looks rather natural to add these points to cluster 1W . Thus, points {20,37,56,7,47,48} can be used 

for determination of boundaries of zone of attraction of saddle point Tx .  

On the step 6S  big cluster combines with five-point cluster }55,46,36,19,6{2 W  (fig. 6). 

All points of cluster 2W  have birth rates which are bigger than 1; moreover, next points belong to 

maximum of outbreak or super-outbreak. It allows concluding that considering points belong to 

zone of outbreak (phase of outbreak increasing; Isaev et al., 1984, 2001).  

Cluster }57,38,21{3 W  combines with big cluster on the step 7S  (fig. 6, 7). All points of 

this cluster have birth rates which are less than 1. Next points (22, 39, 58) have birth rates which 

are bigger than 1. Such kind of behavior of trajectory is typical for zone of stability of system and 

special zone on phase portrait which is bounded by incoming separatrix ry  in domain }1{ y  

(fig.1). But as it was obtained before points of cluster 1W  belong to outbreak zone – taking it into 

account we can conclude that points of cluster 3W  belong to phase of depression or to phase of 

restoration of stable conditions (close to points m  and n  of outbreak phase trajectory; fig. 1). 

Cluster }54,14{4 W  combines with big cluster on the step 8S  (fig. 6, 7). These points 

have birth rates which are less than 1. It means that these points cannot belong to outbreak zone 

(fig. 1). On the other hand, point 55 belongs to outbreak zone. After point 14 we have further 

decreasing of population density. Thus, these points belong to zone of stability, but points have 

different properties.  

We cannot exclude an assumption that after that step we will have process of clustering of 

points which belong to zone of stability (step 9S ): next cluster }53,18,13{5 W  contains points 

which have birth rates bigger than one. But after points 13 and 53 we have cluster 4W  with points 

from zone of stability, and it allows us concluding that these points 13 and 53 belong to zone of 

stability too. We cannot exclude a situation when points 13 and 53 belong to outbreak zone but 

returning back to zone of stability is possible after extra-unfavorable weather conditions. It 

requires in combined analysis of population dynamics with dynamics of weather conditions. 

After point 18 we can observe outbreak trajectory 19-21. It means that this point can 

belong to outbreak zone. If so, cluster 5W  isn’t homogenous and contains points as from zone of 
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stability of system as from the outbreak zone. It is possible situation (appearance of cluster 5W ) 

because points of these zones can be close to each other (Isaev et al., 1984, 2001), and it was 

observed for some other species (Nedorezov, 1981, 1989, 1999).  

 

 

Fig. 7. Analysis of structure of phase portrait. Details are in the text. 

 

The same property (like for point 18) is observed for point 45 which combines with big 

cluster at the next step 10S  (fig. 6). May be, this point belong to outbreak zone: birth rate is bigger 

than one, and after this point super-outbreak trajectory is observed. We can’t determine truthful 

position of points 45 and 18; in figure 7 there is behavior of threshold curve ry  for the case when 

both points belong to zone of stability of system. But we have to note that presented position of 

separatrix ry  isn’t real – estimation of real position of this curve must be determined as non-linear 

curve which separates points of zone of stability and outbreak zone. 

At the next step 11S  (fig. 6) point 1 (1881/1882) combines with big cluster. Birth rate for 

this point is less than one (fig. 2a) and during several time steps population density decreases (1-2-

3-4). Thus, we have a background for conclusion that this point belongs to zone of stability. As we 

can see in figure 6 there are several important steps in forming of big cluster of points within the 

limits of stable zone – these steps correspond to situations when we observe combination of rather 

big clusters. It can give a background for conclusion that moving of system in zone of stability 

may have complicated character. For example, analysis of time series of Dendrolimus pini L. 

allowed concluding that within the limits of zone of stability this pest may have two stable levels 

(Nedorezov, 1999). But on the other hand model which is on the base of set of phase portraits of 

insect dynamics (Isaev et al., 1984, 2001), doesn’t allow analyzing population dynamics when its 
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density is small. It means that we haven’t good mathematical background for analysis of behavior 

of time series with rather small values. 

Last step in analysis of structure of phase portrait is following: we have to divide of space 

on zones which belong to every determined cluster. After that we can estimate probabilities of 

transmission of system from one zone to another: it can be considered as element of forecasting of 

system behavior.  

 

Conclusion 

Provided analysis of time series on pine looper moth population dynamics shows that we 

cannot reject hypothesis that insect dynamics in Germany corresponds to outbreak proper (fig. 1). 

Applied methods of analysis allowed estimating positions of basic stationary points on phase 

portrait (point of stability, point of escape etc.). With the help of cluster method we obtained 

possibilities in determination of position of threshold curve which divides zone of stability and 

outbreak zone; additionally we obtained possibility in estimating of probabilities of system 

transmission from one zone of phase portrait to another – it can be considered as element of pest 

population forecasting. 
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