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Description of ELP-model 

Various species of forest insects have one-year generations, and during winter time 

individuals stay in pupae phase (for example, pine looper moth Bupalus piniarius L.; Klomp, 

1966; Isaev et al., 1984, 2001; Nedorezov, 1986, 2012; Kendall et al., 2005; Nedorezov, 

Utyupin, 2011 and others). For description of population dynamics for these species models of 

isolated population dynamics can be used (Kostitzin, 1937; Pielou, 1977; Nedorezov, 1986, 

1997, 2012) but series problems can appear if we want to take into account an information which 

contains several coupled time series (like in the case with pine looper: time series on pupae, 

larvae, and eggs were collected by H. Klomp in one and the same location). In considering 

situation special models which contain several variables, must be created (see, for example, 

Costantino et al., 1997; Dennis et al., 2001; Desharnais et al., 2001; Nedorezov, Nekljudova, 

2000).  

Let kP  be a number of pupae at year number k . Respectively, kB  is a number of 

butterflies, kL  is a number of larvae, kE  is a number of eggs. Relation between 1kB  and kP  is 

determined by the following equation: 

kk PB 11  .                                                                 (1) 

In (1) 1 , 10 1   , is quota of survived pupae during the winter period. Amount of this quota 

depends on weather conditions but now we’ll assume that these conditions are constant. It also 

depends on food conditions for larvae: in indirect way it can be described as dependence on kL : 

)(11 kL  . Increasing of number of larvae leads to decreasing of food conditions for them and, 

respectively, to decrease of amount of 1 . Asymptotically 1  goes to zero: 

0)(1  , 01 
kdL

d
.                                                           (2) 

Below the following function will be used: 
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It is obvious that function (3) corresponds to conditions (2). All parameters jg  are non-negative 

constants and 10 1  g .  

Relation between variables 1kE  and 1kB  can be described with the following equation: 

11   kk CBE .                                                             (4) 

In (4) C  is productivity of butterflies. Below it will be assumed that productivity depends on kL , 

)( kLCC  . This function decreases with increase of number of larvae, and asymptotically it 

goes to zero: 

0)( C , 0
kdL

dC
.                                                          (5) 

Simple function which satisfies conditions (5), can be presented in the form: 
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
 .                                                             (6) 

All parameters jc  are non-negative constants. Taking into account that number of butterflies is 

real invisible variable (amount of this variable is rather difficult to determine in field conditions), 

it can be deleted from model. Combining of equations (1) and (4) we get 

kk PCE 11  .                                                            (7) 

In (7) functions in right-hand side satisfy to conditions (2) and (5), and in simple cases can be 

presented in forms (3) and (6).   

Let 2  be a quota of eggs successfully transformed into larvae, 10 2   . Below we’ll 

assume that const2  (but in general case it is naturally to assume that amount of this quota 

depends on weather conditions). Thus, we have the following equation: 

121   kk EL  .                                                            (8) 

The final equation is analog of Moran – Ricker model: 

1

11


  kL

kk eLP


.                                                         (9) 

In (9) parameter   corresponds to influence of self-regulative mechanisms on larvae’s 

surviving, and expression }{ 1 kLExp   is equal to quota of larvae successfully transformed into 

pupae. Combining equations (7), (8), and (9) we obtain ELP-model of insect population 

dynamics. This model has eight non-negative parameters. Initial values of model variables are 

additional parameters which must be determined at a process of model parameter estimations.  
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Transformation of ELP-model 

If we want to estimate model parameters and have three coupled time series (like for pine 

looper moth; Klomp, 1966) we have to use ELP-model (7)-(9) as it is. But in current publication 

we want to describe basic properties of ELP-model. In this occasion we can transform model, 

and present it as one equation for description of number of larvae dynamics: 

)1)(1( 33
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LgLc

eLgc
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








.                                                  (10) 

Let’s note, if we want to estimate model (10) parameters using one time series on larvae 

dynamics it will be possible to estimate value of product 11gc , and there are no possibilities to 

estimate values of these parameters separately. Moreover, taking into account a certain 

symmetry for expressions 3

21
c

kLc  and 3

21
g

kLg  in (10) obtaining of final results will not allow 

us saying what kind of estimations have relation to productivity of butterflies and what kind of 

estimations have relation to surviving of pupae during the winter time.  

 

Properties of model (10) 

1. For all non-negative initial values of variable solutions of model are non-negative and 

bounded. It follows from the following inequalities: 
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2. For all values of model parameters origin is stationary state. If product 111 gc  origin is 

global stable equilibrium of model. If inverse inequality 111 gc  is truthful origin is unstable 

stationary state. Thus, 111 gc  is cylindrical bifurcation surface in space of model parameters. 

3. If inequality 111 gc  is truthful non-trivial stationary state exists in phase space. Coordinate 

of this stationary state can be found as solution of algebraic equation 

kLg

k

c

k egcLgLc


 1122 )1)(1( 33 . 

In left-hand side of this equation there is monotonic increasing function, and monotonic 

decreasing function is in right-hand side of equation. 

4. In Fig. 1 bifurcation diagram is presented. This diagram was obtained for following values of 

model parameters: 1 , 12 c , 13 c , 12 g , 13 g . For every fixed values of product 11gc  

ordinate line contains coordinates of asymptotically stable attractors.  

As we can see on this figure 1, if 111 gc  origin is global stable equilibrium: population 

eliminates for all initial values of population size. Intersection of bifurcation value 111 gc  leads 



Population Dynamics: Analysis, Modelling, Forecast 3(4): 93–101 

 

 

 96 

to appearance of non-trivial stationary state; at that values origin is unstable equilibrium. On the 

interval ]12,8[  non-trivial stationary state looses its stability and in phase space global stable 

2cycle appears.  

 

 

Fig. 1. Bifurcation diagram: 1 , 12 c , 13 c , 12 g , 13 g .  

 

On the interval ]24,20[  2-cycle looses its stability and stable 4-cycle appears in phase 

space. In other words, in Fig. 1 we can observe standard process of doubling of cycles and 

appearance in phase space various cyclic and chaotic dynamic regimes. It allows concluding that 

model (1) contains very rich set of dynamic regimes. 

If parameter 103 c  (values of all other parameters are the same) bifurcation diagram 

has other form (Fig. 2). Note that parameter 3c  plays a role of modifier of productivity of 

butterflies: bigger value of this parameter leads to faster decreasing of productivity with respect 
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to population size. Similar role is observed for parameter 3g , and results observed for first 

parameter will be observed for the second one. 

 

 

Fig. 2. Bifurcation diagram: 1 , 12 c , 103 c , 12 g , 13 g . 

 

First of all, in the second case (Fig. 2) non-trivial equilibrium looses its stability faster 

than in the first case (Fig. 1): it is observed about 4. The second, productivity decreases faster but 

coordinates of stable attractors are bigger than in the first case. And, the third, there are no big 

windows (intervals of changing of product 11gc  when rather simple dynamic regime is realized 

in model) like in first case. 

5. In Figure 3 there are two variants of behavior of Lyapunov’s characteristics corresponding to 

situations presented in Fig. 1 and 2:  
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In (11) f  is the function in right-hand side of equation (1). Sequence 0x , 1x , 2x … is trajectory 

of model (10) which is generated for fixed values of model parameters and initial population size 

0x .  
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Fug. 3. Behavior of Lyapunov’s characteristics for 1 , 12 c , 13 c , 12 g , 13 g  (a) and 

for 1 , 12 c , 103 c , 12 g , 13 g  (b). 

 

As we can see in these pictures, exponential divergence of trajectories of model (10) in 

the second case (Fig. 3b) is observed for smaller values of product 11gc  than it is observed in the 

first case (Fig. 3a). It allows create a hypothesis about influence of dependence of productivity 

and quota of survived individuals on food conditions for larvae. We can also see that windows in 

the second case are not so wide like in the first case.  

6. On Figure 4 domains where conditions of Diamond theorem (Diamond, 1976) are truthful (red 

points) are presented on the plane ),( 11 gc . Parameters of model corresponding to Figure 4a are 

the same like for Fig. 1 and 3a; in the second case (Fig. 4b) parameters are the same like for Fig. 

2 and 3b. As we can see in Fig. 4, structures of domains of red points are qualitatively different. 
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Fig. 4. Domains where conditions of Diamond theorem are truthful (red points): for first variant 

(a) and second variant (b). 
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Comparison of sets in Fig. 4 allows conclusion that specificity of dependence of 

butterfly’s productivity and/or coefficient of surviving of individuals during the winter can be a 

reason of appearance of chaotic changing of population size.   

 

Conclusion 

Analysis of ELP-model shows that it contains very rich set of dynamic regimes including 

cyclic regimes of all lengths and chaotic dynamic regimes. At the same time it does not contain 

regimes with several stationary states in phase space – it can lead to appearance of problems in 

application of this model for description of outbreak species. 
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