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Abstract. Model of predator-prey system dynamics with satiation effect is considered. Within the 

framework of model it is assumed that appearance of new individuals of both populations is 

considered at fixed time moments. Death processes of individuals have continuous nature. Obtained 

dynamic regimes are discussed. 

 

Description of model 

In our previous publication (Utyupin, Nedorezov, 2014) continuous-discrete model of 

predator-prey system dynamics was considered. Analyzed model had three variables: )(tx  is number 

of preys at moment t , )(tz  is number of predators, and )(tW  which is equal to total sum of food in 

digestive system of all predators at time moment t . In current publication we consider modification of 

this model when )(tW  isn’t a total sum of food in digestive system of all predators but sum of food in 

digestive system (DS) of one predator.  

It leads to necessity of modification of all equations of model (Utyupin, Nedorezov, 2014). 

Moreover, model can be simplified: we’ll assume that variable )(tW  is fast with respect to two other 

variables )(tx  and )(tz . One more simplification is following: we’ll assume that there are no self-

regulative mechanisms in predator population, and respectively number of preys (food conditions) is 

unique regulator of number of predators. These simplifications allow giving dipper analysis of model 

of predator-prey system dynamics than we could provide for previous model.  

Let’s assume that on every time interval [ , )t tk k1  dynamics of considering system is described 

by the following equations (Isaev et al., 1984, 2001): 
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Ax

z
bza

dt

dz


 22 ,                                                            (1) 

In system (1) parameter a1  is intensity of natural death rate of preys; b1  is coefficient of self-

regulation in population of preys; coefficient 1c  is maximum of intensity of predation (when number 

of preys is rather big, Ax  ), and Ac /1  is minimum of intensity of predation (when number of 

preys is rather small, Ax  ). Parameter 2a  is intensity of natural death rate of predators; parameter 

2b  is an intensity of additional death process which determines by the existence of food conditions: it 

decreases at increase of number of preys, and it increases with increase of number of predators. All 

parameters in model (1) are non-negative. 

At time moments 1kt  of appearance of individuals of new generation the following relations 

are truthful (Nedorezov, Utyupin, 2011; Nedorezov, 2012):  

)0()( 111   kk txYtx , 

)0()()( 11   kk tzftz  .                                                       (2) 

In (2) 1Y  is productivity of preys survived to time 1kt ; function   describes food conditions for 

predators during certain time period ),[ 11   kk tt  : 
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Non-negative function )(f  has following properties: 

Cf )( , 0)0( f , 0
d

df
. 

Making situation simpler we’ll assume that 0  and  2)( Yf  . After this simplification 

conditions (2) will have the following forms: 
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Without loosing generality we can put that 111  cbh  (it can be provided with simple 

transformation of variables). System (1) will have the form: 
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Properties of model (3)-(4) 

Model (3)-(4) has following obvious properties:  

1. Solutions of model with non-negative initial values will be non-negative for all 0t .  

2. There exists value xx   and all trajectories with non-zero initial values come into the strip 

xx 0 . If 0)0( z  model (3)-(4) transforms into the following system of equations:  

2
1 xxa

dt

dx
 , 

)0()( 111   kk txYtx . 

Solution of this system gives the following recurrence equation: 
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This equation is well-known Kostitzin model (Kostitzin, 1937) which has one non-zero global stable 

equilibrium: 
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This equilibrium exists if and only if the following inequality is truthful: 

1
1

a
eY  .                                                                   (5) 

If condition (5) isn’t truthful origin is global stable equilibrium. Thus, below we’ll assume that 

condition (5) is truthful for model parameters. 

3. Let’s consider an image of half-line xx  ,  z0  which can be obtained after one iteration 

determined by the model (3)-(4). It is important to note that transformation determined by equations 

(3)-(4) is continuous because equations for “jumps” of trajectories (3) are determined by continuous 

functions, and for system (4) conditions of theorem about continuous dependence on parameters are 

realized. Thus, considering half-line transforms into continuous line after iteration. Note that 

stationary state )0,(x  transforms into itself.  

It is possible to prove that image of point ),( zx  when z , converges to origin. Let )(tx  

and )(tz  be solutions of system (4) with initial point ),( 0zx . Taking into account that inequalities 

)()()( 21 tztztz   are truthful where )(1 tz  is solution of equation 

A

z
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and )(2 tz  is solution of equation 
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with initial values 00 )( ztzi  , 2,1i , we can show that )()( 1 txtx   where )(1 tx  is solution of 

equation  

Ax

zx

dt

dx




1

111 ,                                                               (8) 

with initial values xtx )( 01 . Thus, the following inequality is truthful: 
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Solutions of equations (6)-(8) give us following relations: 
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When 0z  we have  
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Thus the following inequality is truthful at 0z : 
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This inequality allows us concluding that at 0z  image of point ),( 0zx  converges to 

origin. In other words, strip ),0(),0( x  transforms into closed limited domain D . Respectively, we 

obtain that second variable is limited too. 

4. Let’s analyze conditions of stability of point )0,(x . Note that within the limits of rather small 

domain near this point system (4) has the following form:  

2
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dt
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Let’s find solutions of system (9) with initial values 0)0( xx  , 0)0( zz  . From the first equation of 

system (9) we have the following function:  
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This function we have to put into second equation of system (9):  
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Solution of this equation gives the next result:  
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At time moment 1t  numbers of individuals survived to this moment, are determined by the 

relations:  
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Finally, we get the following transformation of first quota of the plane into itself:  

)01()1( 1  xYx , 
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After finding of eigenvalues of Jacobi matrix of this transformation of plane we obtain the 

following condition of local stability of point )0,(x : 
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Numerical analysis of model (3)-(4) 

Numerical analysis of model was provided in the following manner. All parameters of model 

were fixed, and 2Y  was used as bifurcation parameter. Changing of structures of phase space was 

considered at increasing of parameter 2Y .  

It is obvious, if 2Y  is rather small point )0,(x  is global stable equilibrium of system. Predators 

extinct for all initial values of population sizes. Increase of 2Y  leads to the situation when stationary 

state )0,(x  becomes unstable. This bifurcation leads to appearance of non-trivial stable stationary 

state.  

Note, that it is possible to show that isocline of horizontal inclines (this is a curve which 

contains points with the following property: images of these points have the same ordinates) intersects 
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line x  and has horizontal asymptote. Isocline of vertical inclines intersects axis z  and contains point 

)0,(x . It is also obvious that isocline of horizontal inclines increases strongly in 2
R .  

When parameter 2Y  increases isocline of horizontal inclines doesn’t change, and point of 

intersection of isocline of vertical inclines with axis x  moves left. Thus, non-trivial stationary state 

moves left along the isocline of vertical inclines when 2Y  increases. Further pictures of bifurcations 

depend on values of other parameters and can be qualitatively different.  

On figure 1 there is one of possible lines of bifurcations of trajectories on phase plane ),( zx . 

When parameter 2Y  is rather small non-trivial stationary state is global stable equilibrium. Increasing 

of parameter can lead to situation when non-trivial stationary state continues to be stable but 

concentration of trajectories leads to appearance of cycles on the plane. At further increase of 

parameter stationary state becomes unstable, and closed invariant curve appearance on plane (fig. 1a). 

In a result of bifurcations of duplication of cycle cycles of various lengths can be observed (fig. 1b: 

there is 16-cycle). Further bifurcations of duplication lead to appearance of stable chaotic attractor 

(fig. 1c).  

 

   

  

Fig. 1. Changing of dynamic 

regimes in model at increase of 

parameter 2Y . Values of 

parameters are following: 11 a , 

12 a , 04.02 b , 1A , 

501 Y .  

 

At increase of parameter 2Y  chaotic attractor can loose its stability. In this case all trajectories 

converge to invariant curve (fig. 1d). After a certain number of bifurcations which lead to loosing of 

stability of attractor and its further restoration, attractor becomes bigger up to its biggest size (fig. 1e). 

At this situation there are no other stable attractors on the plane.  
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Thus, analysis of rather simple mathematical model shows that at certain conditions difficult 

dynamic regimes can be observed on phase plane. At present time there are no possibilities to establish 

correspondence between model dynamic regimes and regimes observed in natural conditions. 
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