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Abstract 

Current publication is devoted to traditional and non-traditional approaches to statistical 

analysis of well-known time series on the dynamics of larch bud moth (Zeiraphera diniana 

Gn.) in Swiss Alps. For fitting of time series modifications with time lags of Moran – Ricker 

model were applied. For some particular cases it was obtained that considering models can 

give good quantitative and qualitative fitting of time series. 
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Introduction  

There is a lot of publications which are devoted to analysis of empirical time series and 

to modeling of larch bud moth (Zeiraphera diniana Gn.) population fluctuations (see, for 

example, Auer, 1977; Baltensweiler, 1964, 1978; Baltensweiler et al., 1977; Fischlin, 

Baltensweiler, 1979; Baltensweiler, Fischlin, 1988; Dellucchi, 1982; Isaev et al., 1984, 2001; 

Turchin, 2003; Turchin et al., 2003; Nedorezov, 1986, 2007 and many others). Ability of 

publications and models has a strong correlation with ability of various theories which are 

devoted to the explanation of existing periodic fluctuations of larch bud moth in Swiss Alps 

(Royama, 1981; Turchin, 1990; Hunter, Price, 1998; Berryman, Turchin, 2001; Kendall et al., 

1999; Ginzburg and Taneyhill, 1994; Andersen, May, 1980).  

In our previous publications we tried to apply simplest mathematical models with 

discrete time (table 1; kx  is population density at moment k , ...2,1,0k ; parameters a  and 

b , and initial population density 0x  are non-negative amounts) for fitting of some time series 
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of larch bud moth density changing in time (Nedorezov, 2007, 2011). Using standard 

approach to analysis of deviations between theoretical (model) and empirical values allowed 

us showing that for one of time series simplest mathematical models can give sufficient 

approximation.  

 

Table 1. Models used for approximation of datasets 
Models Source Name of the model (common or 

used in current publication) 
1 1

1 )1( 
  kkk bxaxx  Kostitzin, 1937 Kostitzin model 

2 )(1 kkk xbaxx   Moran, 1950; Ricker, 1954 Discrete logistic model 
3 )1(1

kbx
k eax 
   Skellam, 1951 Skellam model  

4 b
kk axx 

  1
1  Morris, 1959; Varley, 

Gradwell, 1960, 1970 
Morris – Varley – Gradwell 
model  

5 kbx
kk eaxx 

 1  Moran, 1950; Ricker, 1954 Moran – Ricker model  
 

In other words, tests of sets of deviations between theoretical (model) trajectories and 

real time series showed that for selected 5% significance level we cannot reject hypotheses 

about equivalence of average to zero, about normality of sets of deviations, and about absence 

of serial correlation in sequences of residuals (Bolshev, Smirnov, 1983; Draper, Smith, 1986; 

Shapiro, Wilk, Chen, 1968; Bard, 1974). But for considering in current publication time series 

all models from the table 1 couldn’t give sufficient approximation (Nedorezov, 2007, 2011).  

In several publications it was proved that existence of time lag in reaction of main 

population regulators on population density changing in time can play extremely important 

role in realization of observed various dynamic regimes (Isaev et al., 1984, 2001; Nedorezov, 

1986, 1997, 2012; Turchin P. 1990, 2003; Berryman A.A., Turchin P. 2001; Nedorezov, 

Utyupin, 2011). Best results were obtained for Moran – Ricker model (table 1; Moran, 1950; 

Ricker, 1954) which is characterized by ability of difficult dynamic regimes. It gives us a 

background for continuation of search of best model for fitting of larch bud moth time series. 

 

Datasets 

Regular observations of the changing of larch bud moth population densities in time in 

Swiss Alps (Upper Engadine valley) had been started in 1949 (Auer, 1977; Baltensweiler, 

Fischlin, 1988). In current publication we use time series (fig. 1) which can be free 

downloaded in Internet (NERC Centre for Population Biology, Imperial College (1999) The 

Global Population Dynamics Database, N 1407. Unit of measurement is “number of larva per 

kilogram of branches”.  
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As it was pointed out in GPDD, data were collected on 1800 m above sea level that 

corresponds to optimal zone of species living (Isaev, Nedorezov, Khlebopros, 1980; Isaev et 

al., 1984, 2001). Sample contains 38 values (first point corresponds to 1949). 

 

 

 
Fig. 1. Larch bud moth population density changing. a – arithmetic scale, b – logarithmic 
scale. 
 

Population fluctuations on the plane “population density – birth rate” where birth rate 

is determined as relation of densities of two nearest values:  

k

k
k x

xy 1 , 
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are presented on fig. 2. As we can see on this picture it is possible to point out some parts of 

empirical trajectory (11-13, 19-22) where we can observe decreasing of birth rate in upper part 

of plane (where birth rate is bigger than 1). Such kind of behavior of trajectory corresponds to 

theoretical imagination of permanent outbreak dynamics (Isaev, Nedorezov, Khlebopros, 

1980; Isaev et al., 1984, 2001). Even part 29-31 of trajectory can be explained (on qualitative 

level) within the framework of this theory of population outbreaks (there is a special zone on 

phase plane where birth rate is less then one but this sub-zone belongs to outbreak zone). 

 

 
Fig. 2. Changing of population conditions on the plane “population density – birth rate” 
(logarithmic scales). Point 1 corresponds to 1949.  
 

Used models 

As it was showed in our previous publications (Nedorezov, 2007, 2011, 2012), models 

from the table (1) cannot give a good approximation for considering time series (fig. 1 and 2). 

Best results were obtained for Moran – Ricker model (table 1). But application of various 

statistical tests to analysis of deviations between theoretical (model) trajectory and empirical 

time series showed that this model isn’t suitable for fitting. In current publication we apply 

modifications of Moran – Ricker model for fitting:  








 




m

j
jkjkk xaAxx

0
1 exp , ,...2,1m                                          (1) 

In (1) ja  are non-negative parameters, kx  is a population density at moment k . If in (1) 

0m  we have classic Moran – Ricker model (table 1).  
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Statistical criterions 

In current publication we’ll follow the traditional way for analysis of correspondence 

of real empirical time series and model trajectories. It means that for every considering model 

we have to estimate model parameters minimizing squared deviations between time series and 

model trajectories. It is rather common opinion that model gives sufficient fitting of time 

series if  

- we cannot reject the hypothesis about equivalence of average of residuals to zero, 

- we cannot reject the hypothesis about Normality of deviations (Kolmogorov – Smirnov test, 

Lilliefors test, Shapiro – Wilk test etc.), 

- we have to reject hypotheses about existence of positive or negative serial correlation in 

sequence of residuals (Durbin – Watson test, analysis of behavior of auto-correlation function 

with testing of hypotheses about equivalence of the respective values of this function to zero). 

If these basic requirements are truthful for the respective set of deviations, we can talk 

about good correspondence between theoretical and empirical datasets. On the other hand, 

requirements about Normality of set of deviations are not correct, and it isn’t realized for 

biological objects. It is obvious, if we estimate a weight of any object in grams we cannot 

have an error in several tons with positive probability; we cannot also obtain negative values 

for weight with positive probability. Thus, we have to exclude this requirement from the list. 

In our opinion basic requirements to set of deviations between theoretical and empirical time 

series must be following: 

- we cannot reject the hypothesis about symmetry of distribution with respect to origin 

(Kolmogorov – Smirnov test, Wilcoxon test), 

- density must have one maximum in origin, 

- we have to be sure that theoretical trajectory has the similar features of behavior as empirical 

trajectory; in particular, signs of increments must be the same: if p  is a frequency of 

situations when signs are equal, we have to reject Null hypothesis 0H : 5.0p  with 

alternative hypothesis 1H : 5.0p ; the same situation must be observed for “second 

derivatives” etc.  

As it was pointed out above, in current publication we will follow of the traditional 

way of analysis of correspondence of theoretical and empirical trajectories: estimation of 

model parameters – analysis of deviations. But in our opinion it is much better to use the 

inverse way: determination of set of suitable values of model parameters – choosing of values 

of parameters. For example, application of Wilcoxon test for checking of symmetry of 

deviations of empirical dataset (fig. 1) from the trajectory of Moran – Ricker model (table 1) 
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gave the results presenting on fig. 3. Red points on this picture correspond to situation when 

for determined values of model parameters we can point out at least one initial value 0x  when 

Wilcoxon test doesn’t allow rejecting Null hypothesis about symmetry with 5% significance 

level. Green points correspond to situation when Null hypothesis must be rejected. Blue points 

correspond to situation when Wilcoxon test cannot be applied to analysis of deviations 

(number of negative or positive deviations are equal to 5 or less than 5).  

Application of Kolmogorov – Smirnov test will give us another “red points” and so on. 

Let’s denote as jB  respective sets of “red points” we obtain in a result of application of 

statistical sets from the list. If intersection of all sets jB  is empty set model isn’t suitable for 

fitting of considering time series. If intersection of all sets isn’t empty we can choose any 

point from this set, and it gives a guarantee that all statistical tests will be satisfied.  

 

 
Fig. 3. Results of application of Wilcoxon test to analysis of deviations between trajectories of 
Moran – Ricker model and larch bud moth time series. 
 

Results of calculations 

Model with time lag 1 

Let’s consider situation when time lag is equal to 1. Modification of Moran – Ricker 

model will have the following form: 

 1211 exp   kkkk xaxaAxx .                                             (2) 

Minimum of squared deviations between real time series and model (2) trajectories 

4.154148min Q  was observed for the following values of model parameters: 
150

1 1097.9 x , 1274.00
2 x , 2996.8A , 3

1 10205.2 a , 02214.02 a . It is interesting 
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to note that 12 aa  . It means that influence of the respective generation is much more strong 

than influence of previous generation on population density changing. 

For these parameters model (2) has bifurcation diagram presented on fig. 4. Number of 

“empty steps” is equal to 20000. After empty steps 200 obtained values of population 

densities were printed on straight line constA   (for every fixed value of this parameter). 

Initial values of population densities were found randomly in intervals ])1(,0[ 2A . 

 

 
Fig. 4. Bifurcation diagram of model (2) for estimated values of parameters 1a  and 2a . 
 

As we can see on fig. 4 process of changing of population density at 3.8A is 

periodic. But it isn’t easy to find a length of this cycle using bifurcation diagram. For 

determination of the length of cycle we can use auto-correlation function for model trajectory 

obtained for asymptotic stabilized regime. In this occasion model had 200000 “empty steps”. 

After these “empty steps” auto-correlation function for 20000 obtained values of population 

density with model (2) was calculated (fig. 5).  
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As we can see on this figure 100 values of this function are very close to 1 periodically 

(values are equal to 0.988546 and 0.99995). It allows us concluding that observed asymptotic 

dynamic regime is close to 9-cycle. It corresponds to observed time series (Auer, 1977; 

Baltensweiler, 1964, 1978; Baltensweiler et al., 1977; Fischlin, Baltensweiler, 1979; 

Baltensweiler, Fischlin, 1988). 

 

 
Fig. 5. Auto-correlation function for stable asymptotic dynamic regime obtained for estimated 
values of model parameters (first 100 values). 
 

On fig. 6 there are the points of asymptotically stable dynamic regime on the plane 

“population density – birth rate” (both coordinate lines are in logarithmic scale).  

 

 
Fig. 6. Model trajectory for asymptotic dynamic regime on the plane “population density – 
birth rate” (logarithmic scales).  
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As we can see on this picture, trajectory of population density changing is rather 

difficult: we can see double 9-cycle with rather close coordinates. We cannot exclude 

hypothesis that in nature fluctuations of larch bud moth correspond to double cycle. But 

monotonic behavior of birth rate (fig. 6) doesn’t correspond to non-monotonic behavior of 

birth rate for real datasets (fig. 2). Thus, we cannot conclude that we have qualitative 

correspondence between model trajectory and real datasets. It doesn’t also correspond to 

theoretical imaginations about permanent outbreak trajectory (Isaev, Nedorezov, Khlebopros, 

1980; Isaev et al., 1984, 2001). 

Analysis  of  deviations  showed  that  average  plus/minus  standard  error  is  equal to  

-9.172±10.36 (thus, we can’t reject hypothesis about equivalence of average to zero with 5% 

significance level), for Kolmogorov – Smirnov test 307.0d  with 01.0p , for Lilliefors 

test 01.0p , for Shapiro – Wilk test 71379.0W  with 510p , for Durbin – Watson 

criteria 8476.1d  (critical level for this test is ddu  535.1  - there are no serial 

correlations). Thus, traditional approach to analysis of deviations allows concluding that 

model (2) isn’t suitable for fitting of considering empirical time series.  

Analysis of symmetry of deviations with respect to origin by the Kolmogorov – 

Smirnov test shows that 1722.0d  with the respective probability 916.0p . Thus, we have 

to accept the hypothesis about symmetry (probability is very big). Comparison of increments 

of real trajectory and model trajectory shows that signs of increments are the same in 78.38% 

of all cases. For 37 degrees of freedom and 5% significance level theoretical value of Student 

test is equal to 2.0262. Checking of the hypothesis that frequency is equal to 0.5 we obtain 

that real value of t-test is equal to 3.5689 (we have to reject Null hypothesis 5.0p ). Thus, 

we have a background for conclusion that there is rather good correspondence between 

changing of increments of real and model trajectories.  

For “second derivatives” we have better correspondence (estimation of probability is 

close to one): 916667.0p . Thus, in considering situation we have also to reject Null 

hypothesis 0H : 5.0p . Taking into account that there are no serial correlations (Durbin – 

Watson test showed that 8476.1d  - this value belongs to zone of absence of serial 

correlation in the sequence of residuals) we obtain a good background for conclusion that 

model (2) gives good fitting for larch bud moth time series (fig. 1 and 2). Note, this 

conclusion is in contradiction with conclusion we obtained with traditional approach to 

analysis of deviations. Finally, we can say that in considering situation we have quantitative 
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correspondence between theoretical and empirical trajectories but it is without of the 

qualitative correspondence.  

Results of approximation of larch bud moth time series by model (2) are presented on 

figure 7 (in arithmetic and logarithmic scales). Continuous line corresponds to real dataset, 

broken line is model trajectory. 

 

 

 
Fig. 7. Results of approximation of larch bud moth time series by model (2). Continuous line 
corresponds to real dataset, broken line is model trajectory; a – arithmetic scale, b – 
logarithmic scale. 
 

Model with time lag 2 

Let’s consider situation when time lag is equal to 2. Modification of Moran – Ricker 

model will have the following form: 
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 231211 exp   kkkkk xaxaxaAxx .                                      (3) 

Minimum of squared deviations between real time series and model trajectories 

1.92099min Q  was observed for the following values of model parameters: 
150

1 10638.5 x , 160
2 10653.2 x , 07208.00

3 x , 076.20A , 3
1 10155.8 a , 

3
2 106994.1 a , 02097.03 a . For these parameters model (3) has bifurcation diagram 

presented on figure 8. Number of “empty steps” is equal to 20000. After empty steps 200 

obtained values of population densities were printed on straight line constA  . Bifurcation 

diagram doesn’t allow determination of asymptotic stable dynamic regime for 076.20A  - it 

is obvious that observed regime isn’t cyclic with rather small number of points (in 8 or 9 

points like it is observed for larch bud moth fluctuations). 

 

 
Fig. 8. Bifurcation diagram of model (3) for estimated values of parameters 1a ,…, 3a . 
 

After 200000 “empty steps” auto-correlation function for 20000 obtained values of 

population density with model (3) was calculated (fig. 9). As we can see on this figure 400 
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values of this function are less than 1. It means that for estimated values of model parameters 

asymptotic stable dynamic regime isn’t periodic with length of cycle in 400 steps or less. 

Moreover, maximum value of autocorrelation function is equal to 0.8754 for 1000 values. 

Thus, if observed regime is cyclic the length of cycle is bigger than 1000.  

 

 
Fig. 9. Auto-correlation function for stable asymptotic dynamic regime obtained for estimated 
values of model parameters (first 400 values). 
 

On figure 10 there are 19999 points which belong to asymptotic stable dynamic regime on the 

plane “population density – birth rate” (both coordinate lines are presented in logarithmic 

scale). 

 

 
Fig. 10. Model trajectory for asymptotic dynamic regime on the plane “population density – 
birth rate” (logarithmic scales).  



Population Dynamics: Analysis, Modelling, Forecast 2(4): 154–181 
 
 

 166 

As we can see on this picture dynamic regime is rather difficult. But we haven’t a 

background for conclusion that we have correspondence between this regime (fig. 10), and 

empirical regime (fig. 2).  

Analysis  of  deviations  showed  that  average  plus/minus  standard  error  is  equal to  

-0.1948±8.093 (thus, we can’t reject hypothesis about equivalence of average to zero with 5% 

significance level), for Kolmogorov – Smirnov test 2559.0d  with 05.0p , for Lilliefors 

test 01.0p , for Shapiro – Wilk test 7579.0W  with 510p , for Durbin – Watson 

criteria 8476.1d  ( ddu  535.1  - there are no serial correlations). Thus, traditional 

approach to analysis of deviations allows concluding that model (3) isn’t suitable for fitting of 

considering empirical time series.  

Analysis of symmetry of deviations with respect to origin by the Kolmogorov – 

Smirnov test shows that 4423.0d  with the respective probability 056.0p . Thus, we can’t 

reject the hypothesis about symmetry with 5% significance level. But probability is very close 

to critical level 0.05.   

Comparison of increments of real trajectory and model trajectory shows that signs of 

increments are the same in 89.19% of all cases. Checking of the hypothesis that frequency is 

equal to 0.5 we obtain that real value of t-test is equal to 4.7676 (it is bigger than critical value 

2.0262; we have to reject Null hypothesis 5.0p ).  

For “second derivatives” we have better correspondence: 916667.0p . Thus, in 

considering situation we have also to reject Null hypothesis 0H : 5.0p . Taking into account 

that there are no serial correlations (Durbin – Watson test 8476.1d ) we obtain a good 

background for conclusion that model (3) gives good fitting for larch bud moth time series 

(fig. 1). Note this conclusion is also in contradiction with conclusion we obtained with 

traditional approach to analysis of deviations. Finally, like in previous case we can say that in 

considering situation we have quantitative correspondence between theoretical and empirical 

trajectories but it is without of the qualitative correspondence. Results of approximation of 

considering datasets by trajectories of model (3) are presented on figure 11. 

 

Model with time lag 3 

Let’s consider situation when time lag is equal to 3. Modification of Moran – Ricker 

model will have the following form: 

 34231211 exp   kkkkkk xaxaxaxaAxx .                                (4) 
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Fig. 11. Results of approximation of larch bud moth time series by model (3). Continuous line 
corresponds to real dataset, broken line is model trajectory; a – arithmetic scale, b – 
logarithmic scale. 
 

Minimum of squared deviations between real time series and model trajectories 

9.92018min Q  was observed for the following values of model parameters: 140
1 1097.4 x , 

160
2 1061.1 x , 160

3 102.4 x , 4837.10
4 x , 8439.19A , 0081.01 a , 0018.02 a , 

0186.03 a , 0021.04 a . For these parameters model (4) has bifurcation diagram presented 

on fig. 12. Number of “empty steps” is equal to 10000. After empty steps 200 obtained values 

of population densities were printed on straight line constA   (for every fixed value of this 

parameter). Initial values of population densities were found randomly in intervals 

])1(,0[ 2A .  
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Fig. 12. Bifurcation diagram of model (4) for estimated values of parameters 1a ,…, 4a . 
 
After 200000 “empty steps” auto-correlation function for 20000 obtained values of population 

density with model (4) was calculated (fig. 13). As we can see on this fig. 13 400 values of 

this function are less than 1. It means that for estimated values of model parameters 

asymptotic stable dynamic regime isn’t periodic with length of cycle in 400 steps or less.  

 

 
Fig. 13. Auto-correlation function for stable asymptotic dynamic regime obtained for 
estimated values of model (4) parameters (first 400 values). 
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Maximum value for auto-correlation function for 1000 values is equal to 0.776365. It means 

that observed dynamic regime isn’t periodic with period in 1000 steps or less. On fig. 14 there 

are the values of population density obtained for stable regime. 

 

 

 
Fig. 14. Population density changing in time for stable dynamic regime. a – arithmetic scale, b 
– logarithmic scale (first 500 values).  
 

Projections of stable dynamic trajectory onto various planes ),( 1kk xx , ),( 2kk xx , and 
),( `3kk xx  are presented on fig. 15. 
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Fig. 15. Projections of stable dynamic trajectory onto planes: a - ),( 1kk xx , b - ),( 2kk xx , c -

),( `3kk xx . 
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On fig. 16 there are the points of asymptotically stable regime on the plane “population 

density – birth rate”. As we can see on these pictures (fig. 15 and 16), trajectory of population 

density changing is rather difficult but it doesn’t correspond to theoretical imaginations about 

permanent outbreak trajectory (Isaev et al., 1984, 2001).  

 

 
Fig. 16. Asymptotically stable regime on the plane “population density – birth rate” (in 
logarithmic scales). 
 

Analysis of deviations showed that average plus/minus standard error is equal to -

0.1239±8.09 (thus, we can’t reject hypothesis about equivalence of average to zero with 5% 

significance level), for Kolmogorov – Smirnov test 25791.0d  with 05.0p , for Lilliefors 

test 01.0p , for Shapiro – Wilk test 7576.0W  with 510p , for Durbin – Watson 

criteria 7497.1d . Thus, traditional approach to analysis of deviations allows concluding 

that model (4) isn’t suitable for fitting of considering empirical time series.  

Analysis of symmetry of deviations with respect to origin by the Kolmogorov – 

Smirnov test shows that 3723.0d  with the respective probability 144.0p . Thus, we can’t 

reject the hypothesis about symmetry even with 10% significance level. Comparison of 

increments of real trajectory and model trajectory shows that signs of increments are the same 

in 86.84% of all cases. For 37 degrees of freedom and 5% significance level theoretical value 

of Student test is equal to 2.0262. Checking of the hypothesis that frequency is equal to 0.5 we 

obtain that real value of t-test is equal to 4.5422 (we have to reject Null hypothesis 5.0p ). 

Thus, we have a background for conclusion that there is a good correspondence between 

changing of increments of real and model trajectories.  
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For “second derivatives” we have better correspondence: 916667.0p . Thus, in 

considering situation we have also to reject Null hypothesis 0H : 5.0p . Taking into account 

that there are no serial correlations (Durbin – Watson test) we obtain a good background for 

conclusion that model (4) gives good fitting for larch bud moth time series (fig. 1 and 2). 

Note, this conclusion is also in contradiction with conclusion we obtained with traditional 

approach to analysis of deviations. Finally, we can say that in considering situation we have 

the same result – we have quantitative correspondence between theoretical and empirical 

trajectories but it is without of the qualitative correspondence. Results of approximation of 

larch bud moth time series by model (4) are presented on figure 17.  

 

 

 
Fig. 17. Results of approximation of larch bud moth time series by model (4). Continuous line 
corresponds to real dataset, broken line is model trajectory; a – arithmetic scale, b – 
logarithmic scale. 
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Model with time lag 4 

Let’s consider situation when time lag is equal to 4. Modification of Moran – Ricker 

model will have the following form: 

 4534231211 exp   kkkkkkk xaxaxaxaxaAxx .                          (5) 

Minimum of squared deviations between real time series and model trajectories 

9.92018min Q  was observed for the following values of model parameters: 03.00
1 x , 

140
2 10828.7 x , 150

3 10952.3 x , 160
4 10544.4 x , 349.360

5 x , 755.16A , 

3
1 10723.7 a , 3

2 10314.1 a , 0189.03 a , 4
4 100889.7 a , 22

5 103848.5 a . For 

these parameters model (5) has bifurcation diagram presented on fig. 18. Number of “empty 

steps” is equal to 10000.  

 

 
Fig. 18. Bifurcation diagram of model (5) for estimated values of parameters 1a ,…, 5a . 
 
After 200000 “empty steps” auto-correlation function for 20000 obtained values of population 

density with model (5) was calculated (fig. 19). As we can see on fig. 19 values of this 
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function are very close to 1 periodically (maximum of function is equal to 0.99995). It means 

that for estimated values of model parameters asymptotic stable dynamic regime is close to 9-

cycle. It is interesting to note that taking into account of rather small amount (coefficient 5a  is 

much smaller than all other coefficients) describing the dependence of birth rate on values of 

population density of 5 years ago led to qualitative changing of dynamic regime: on previous 

step non-periodic regime was observed, and it was transformed in 9-cycle. 

 

 
Fig. 19. Auto-correlation function for stable asymptotic dynamic regime obtained for 
estimated values of model parameters (first 400 values). 
 

On fig. 20 there are the values of population density obtained for stable regime (in 

arithmetic and logarithmic scales).  

On fig. 21 there are the points of asymptotically stable regime on the plane “population 

density – birth rate”. As we can see on this picture, trajectory of population density changing 

is rather difficult but it doesn’t correspond to theoretical imaginations about permanent 

outbreak trajectory (Isaev et al., 1984, 2001). 

Analysis of deviations showed that average plus/minus standard error is equal to -

0.8388±7.9869 (thus, we can’t reject hypothesis about equivalence of average to zero with 5% 

significance level), for Kolmogorov – Smirnov test 258.0d  with 05.0p , for Lilliefors 

test 01.0p , for Shapiro – Wilk test 754.0W  with 510p , for Durbin – Watson criteria 

7574.1d  ( ddu  535.1  - there are no serial correlations). Thus, traditional approach to 

analysis of deviations allows concluding that model (5) isn’t suitable for fitting of considering 

empirical time series.  
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Analysis of symmetry of deviations with respect to origin by the Kolmogorov – 

Smirnov test shows that 2957.0d  with the respective probability 344.0p . Thus, we 

can’t reject the hypothesis about symmetry of distribution. 

 

 

 
Fig. 20. Population density changing in time for stable dynamic regime. a – arithmetic scale, b 
– logarithmic scale (first 100 values). 
 

Comparison of increments of real trajectory and model trajectory shows that signs of 

increments are the same in 83.87% of all cases. For 37 degrees of freedom and 5% 

significance level theoretical value of Student test is equal to 2.0262. Checking of the 

hypothesis that frequency is equal to 0.5 we obtain that real value of t-test is equal to 4.11 (we 
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have to reject Null hypothesis 5.0p ). Thus, we have a background for conclusion that there 

is a good correspondence between changing of increments of real and model trajectories.  

 

 
Fig. 21. Asymptotically stable regime on the plane “population density – birth rate”. 
 

For “second derivatives” we have better correspondence: 7778.0p . Thus, in 

considering situation we have also to reject Null hypothesis 0H : 5.0p  (real value of t-test 

is equal to 3.3333, and critical level is 2.03011). Taking into account that there are no serial 

correlations (Durbin – Watson test) we obtain a good background for conclusion that model 

(5) gives good fitting for larch bud moth time series (fig. 1). Note this conclusion is also in 

contradiction (like in previous cases) with conclusion we obtained with traditional approach to 

analysis of deviations. Finally, we can say that in considering situation we have quantitative 

correspondence between theoretical and empirical trajectories but it is without of the 

qualitative correspondence (fig. 22).  

 

Conclusion 

Fitting of time series of larch bud moth fluctuations by the modifications of Moran – 

Ricker model when we take into account an existence of time lag dependence of birth rate on 

population density in previous years (lag is equal or less than 4), allows us concluding that we 

can obtain good approximation. Behavior of trajectories of models with time lags (with 

estimated values of model parameters) corresponds to behavior of real datasets on quantitative 

level. But this results were obtained when we used non-traditional approach to analysis of 

deviations between theoretical (model) and empirical trajectories. When we used traditional 



Population Dynamics: Analysis, Modelling, Forecast 2(4): 154–181 
 
 

 177 

approach and tested sets of deviations on corresponding of distributions to Normal, we 

obtained that all models are not suitable for fitting of empirical datasets. Hypotheses about 

Normality must be rejected with very small significance level (Shapiro – Wilk test).  

 

 

 
Fig. 22. Results of approximation of larch bud moth time series by model (5). Continuous line 
corresponds to real dataset, broken line is model trajectory; a – arithmetic scale, b – 
logarithmic scale. 
 

It is very important to note that requirement to deviations to have a Normal distribution 

is very strong, and it is not applicable to biological objects. In our opinion for testing of 

deviations we have to use softer criterions. For example, we have to test deviations on 

symmetry of their distribution with respect to origin. May be, we have to test on monotonic 

changing of negative and positive branches of density function.  
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But main problem of testing of correspondence of models to real datasets is in order of 

providing of statistical calculations. Within the limits of traditional approach for the first time 

we have to estimate model parameters, and after that we have to analyze sets of deviations 

with group of statistical tests. If all tests show good results we obtain a background for 

conclusion that considering model is suitable for fitting. If not, we say that model isn’t 

suitable for fitting. It means that final conclusion about model and its applicability for fitting 

we make using one point from the space of model parameters.  

In our opinion it is much better to use other way for statistical calculations. First of all, 

we have to determine a list of statistical criterions we assume to use for analysis of deviation. 

For every criterion we have a set in space of model parameters where criterion shows good 

results. Intersection of all these sets gives us a set where every point can be used as estimation 

of model parameters. We cannot exclude the situation that this set is empty, and it corresponds 

to the situation when model isn’t suitable for fitting. But for this conclusion we have to test all 

points of a space of model parameters.  

And the last remark is following. When we have several one-dimensional time series 

for one and the same mathematical model, we have a serious problem in finding of 

minimizing functional form (see, for example, Tonnang et al., 2009, 2010). Sometimes we 

have to summarize numbers of rabbits and foxes, predators and preys with some weights. But 

it looks rather strange. If for the first time we determine a suitable set of points in space of 

model parameters we haven’t this problem. 
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